FRA —  Friday - Early Morning   (30-Aug-19   09:00—11:20)
Chair: L. Giannessi, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
Paper Title Page
FRA01 FEL Operation at the European XFEL Facility 766
 
  • D. Nölle
    DESY, Hamburg, Germany
 
  The European XFEL is a SASE FEL based user facility in the metropole region of Hamburg providing hard and soft X-ray photons with extremely high brilliance. The three FEL lines are operated simultaneously and are powered by a superconducting LINAC based on TESLA technology. Average power levels of up to several W have been demonstrated as well for soft and hard X-rays and can be requested by user experiments on day by day basis. The contribution will report on the results of the commissioning within the last two years as well as on the transition to user operation. Typical operation conditions for parallel operation of 3 SASE lines will be discussed. The perspective for the operation with an extended photon energy range, as well as for full power operation with up to 27000 pulses per second will be presented.  
slides icon Slides FRA01 [27.196 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-FRA01  
About • paper received ※ 20 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA02 LCLS-II - Status and Upgrades 772
 
  • A. Brachmann, M. Dunham, J.F. Schmerge
    SLAC, Menlo Park, California, USA
 
  Funding: This work is supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-76SF00515.
The LCLS-II FEL is under construction at the SLAC National Accelerator Laboratory. This facility is based on a superconducting accelerator, providing a cw e- beam of 4 GeV at ~1 MHz. This beam drives two variable gap undulator (VGU) beam lines to generate photons in the soft and hard X-ray regime. High repetition rate photon beams will be available up to ~5 keV. The normal conducting accelerator will remain in operation, delivering milli-joule pulses up to ~20 keV for LCLS science. We anticipate to start the LCLS user program in the spring of 2020 using the new undulator systems. Superconducting accelerator operation will start in 2021 and will achieve full design-performance over the course of several years. Approximately a quarter of the superconducting accelerator is installed now and the associated cryoplant construction is near completion. The VGU systems will be installed and ready for beam delivery in early 2020. We will report on the project status, commissioning and ramp-up plans to achieve design performance and discuss plans to take advantage of the new facilities potential including our longer term strategy to extend the capability of SLAC’s LCLS FEL facility.
 
slides icon Slides FRA02 [24.207 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-FRA02  
About • paper received ※ 04 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA03 FLASH - Status and Upgrades 776
 
  • J. Rönsch-Schulenburg, K. Honkavaara, S. Schreiber, R. Treusch, M. Vogt
    DESY, Hamburg, Germany
 
  FLASH, the Free-Electron Laser at DESY in Hamburg was the first FEL user facility in the XUV and soft X-ray range. The superconducting RF technology allows to produce several thousand SASE pulses per second with a high peak and average brilliance. It developed to a user facility with a 1.25 GeV linear accelerator, two undulator beamlines running in parallel, and a third electron beamline containing the FLASHForward plasma wakefield experiment. Actual user operation and FEL research are discussed. New concepts and a redesign of the facility are developed to ensure that also in future FLASH will allow cutting-edge research. Upgrade plans are discussed in the contribution.  
slides icon Slides FRA03 [10.554 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-FRA03  
About • paper received ※ 20 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA04
Status of SXFEL Test and User Facilities  
 
  • Z.T. Zhao
    SSRF, Shanghai, People’s Republic of China
 
  Shanghai soft X-ray Free-Electron Laser facility (SXFEL) is being developed in two steps, the test facility SXFEL-TF and the user facility SXFEL-UF. The SXFEL-TF, as a critical development step towards constructing a soft X-ray FEL user facility in China, is under commissioning at the SSRF campus. In the meantime, the SXFEL-UF with designed wavelength in the water window region is being constructed, based on upgrading the SXFEL linac energy to 1.5 GeV and building two undulator lines and five experimental stations. In this paper, we report the construction and commissioning status and future plan of the SXFEL facility.  
slides icon Slides FRA04 [24.201 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)