FEL Theory
Paper Title Page
MOD01
Physics of Post-Saturation Tapered FEL Towards Single-Frequency Terawatt Output Power  
 
  • C.-Y. Tsai
    HUST, Wuhan, People’s Republic of China
 
  Funding: This work is supported by the Fundamental Research Funds for the Central Universities under Project No. 5003131049 and the U.S. DOE under Contract No. DE-AC02-76SF00515 and No. FWP-2013-SLAC-100164.
TW-level output power of a single-pass high-gain x-ray FEL has recently attracted much attention. GW-level power can be achieved out of beneficial FEL instability. The remaining factor of 50 before reaching TW poses great challenges, including sustaining power growth and retaining spectral purity in the post-saturation regime. Post-saturation FEL physics involves the sideband instability [1], radiation diffraction [2], undulator tapering [3] etc. In this talk I will introduce FEL sideband and diffraction effects, and give an estimate of individual effects to the overall performance. Undulator tapering is known an effective route to enhance power extraction efficiency. We recently proposed an efficiency-enhancement scheme based on preserving the longitudinal beam phase space, which ensures trapping of resonant particles in the ponderomotive bucket and meanwhile takes advantage of the increasing radiation amplitude to precipitate the particle deceleration process. Analysis shows that the optimal power efficiency based on the proposed scheme, together with a prebunched beam, can be greatly improved within a relative short taper length and the sideband effects effectively suppressed.
[1] C.-Y. Tsai et al., Phys. Rev. Accel. Beams 20, 120702 (2017)
[2] C.-Y. Tsai et al., Phys. Rev. Accel. Beams 21, 060702 (2018)
[3] C.-Y. Tsai et al., NIM A 913 (2019) 107-119
 
slides icon Slides MOD01 [8.530 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOD02
Microbunch Rotation and Coherent Undulator Radiation from a Kicked Electron Beam  
 
  • J.P. MacArthur
    SLAC, Menlo Park, California, USA
 
  Microbunches form perpendicular to the electron travel direction, and the conventional understanding is that they shear rather than rotate in response to a transverse kick, locking FEL facilities into a single-user operating mode. We show that microbunches rotate toward the new direction of travel if the electron beam is kicked and defocused. We provide evidence that microbunch rotation explains the unexpectedly large amount of off-axis radiation observed during experiments at the Linac Coherent Light Source. We demonstrate that LCLS can be multiplexed into at least three soft X-ray beams using this principle. Finally, we report on a more sophisticated scheme of offset quadrupoles that was used to produce two distinct hard X-ray spots at LCLS.  
slides icon Slides MOD02 [25.347 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOD03
Hanbury Brown and Twiss Interferometry at XFEL Sources  
 
  • I. Vartaniants
    DESY, Hamburg, Germany
 
  The invention of optical lasers led to a revolution in the field of optics as well as to the birth of quantum optics. The reasons were the unique statistical and coherence properties of lasers. Short-wavelength free-electron lasers (FELs) are sources of bright, coherent extreme-ultraviolet and X-ray radiation with pulse duration on the order of tens of femtoseconds and are presently considered to be laser sources at these energies. Hanbury Brown and Twiss (HBT) interferometry that is based on intensity correlations allows fast and comprehensive analysis of the FEL statistical properties. We demonstrate that self-amplified spontaneous emission (SASE) FELs are highly spatially coherent to the first-order, but despite their name, statistically behave as chaotic sources. HBT measurements performed at an externally seeded FEL FERMI showed that it behaves as a real laser-like source according to a Glauber definition.  
slides icon Slides MOD03 [8.298 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOD04
Post-Saturation Dynamics and Superluminal Propagation of a Super-Radiant Spike in a Free-Electrons Laser Amplifier  
 
  • X. Yang
    BNL, Upton, New York, USA
  • L. Giannessi
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • L. Giannessi, N.S. Mirian
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The generation of a single X-ray isolated spike of radiation with peak power at multi-GW level and femtosecond temporal duration represents a unique opportunity in time resolved diffraction imaging of isolated molecules or non-periodic structures for acquiring single shot images before the Coulomb explosion of the sample takes place. Such a condition is met by an FEL operating in superradiant regime for the possibility of simultaneously reducing the pulse duration while increasing the peak power and the pulse energy. We study the dynamics of an isolated spike of radiation in superradiant regime. We show that conditions exist where the pulse moves with a group velocity larger than one and is followed by a pedestal resulting from a complex post-saturation dynamic. The tail is constituted by a train of sub-pulses with both transverse and longitudinal coherence and decaying amplitudes. We analyze the dynamical conditions leading to the formation of the main pulse and the tail. We study the correlation of the tail structure with the longitudinal phase space of the electrons and provide a recipe to partially suppress this tail.  
slides icon Slides MOD04 [7.203 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP019 Regime of Multi-Stage Non-Resonant Trapping in Free Electron Lasers 83
 
  • A.V. Savilov, I.V. Bandurkin, Yu.S. Oparina, N.Yu. Peskov
    IAP/RAS, Nizhny Novgorod, Russia
 
  Funding: This work is supported by the RFBR (grants #18-02-40009, #18-02-00765) and by the IAP RAS Project 0035-2019-0001.
We describe three works united by the idea of the non-resonant regime [1] providing an effective trapping in a beam with a great energy spread. In this regime, the "bucket" corresponding to the resonant electron-wave interaction passes through the electron layer on the energy-phase plane and traps a fraction of electrons. (I) Operability of this regime was demonstrated in the high-efficient 0.8 MeV Ka-band FEM-amplifier [2]. (II) In short-wavelength FELs the multi-stage trapping in several consecutive sections can be organized [3]. In each section a small e-beam fraction is trapped due to a weak electron-wave interaction. However, repetition of this process from section to section involves in the interaction almost the whole e-beam. We describe efficiency enhancement and improving the frequency wave spectrum in multi-stage SASE FELs. (III) The multi-stage amplification of a single-frequency wave signal can provide cooling of the electron bunch. In this regime, tapering of every section is provided such that the "bucket" goes from maximal initial electron energy down to the minimal one and moves down energies of trapped electrons.
[1] A.Savilov et al., Nucl. Instr. Meth. A, vol. 507, p.158, 2003
[2] A.Kaminsky et al., Int. Conf. IRMMW-THz 2018, art. 4057938
[3] S.Kuzikov, A.Savilov, Phys. Plasmas, vol. 25, p.113114, 2018
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP019  
About • paper received ※ 14 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP023 Analytical and Numerical Comparison of Different Approaches to the Description of SASE in High Gain FELs 94
 
  • O.A. Shevchenko, N.A. Vinokurov
    BINP SB RAS, Novosibirsk, Russia
  • N.A. Vinokurov
    NSU, Novosibirsk, Russia
 
  Correlation function theory which has been developed recently gives rigorous statistical description of the SASE FEL operation. It directly deals with the values averaged over many shots. There are two other approaches which are based either on Vlasov equation or on direct solution of particle motion equations. Both of them use random functions which relate to single shot. To check the validity of these three approaches it might be interesting to compare them with each other. In this paper we present the results of such comparison obtained for the 1-D FEL model. We show that two-particle correlation function approximation is equivalent to the quasilinear approximation of the Vlasov equation approach. These two approximations are in a good agreement with the results of direct solution of particle motion equations at linear and early saturation stages. To obtain this agreement at strong saturation high order harmonics in Vlasov equation have to be taken into account which corresponds to taking into account of three and more particle correlations in the correlation function approach.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP023  
About • paper received ※ 19 August 2019       paper accepted ※ 25 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP038 Axial Symmetry in Spontaneous Undulator Radiation for XFELO Two-Bunch Experiment 134
 
  • Y.S. Li
    University of Chicago, Chicago, Illinois, USA
  • K. Kim, R.R. Lindberg
    ANL, Lemont, Illinois, USA
 
  Funding: U.S. DOE, Office of Science, Office of BES, under Contract No. DE-AC02-06CH11357 and National Science Foundation under Award No. PHY-1549132, the Center for Bright Beams.
A well known discrepancy exists between 2D and 3D FEL simulation codes with respect to the radiation field intensity prior to the exponential gain regime [1]. This can be qualitatively explained by the fact that the 3D field representation preserves many more modes than does the axisymmetric field solved for by a 2D code. In this paper, we seek to develop an analytical model that quantifies this difference. We begin by expanding the spontaneous undulator radiation field as a multipole series, whose lowest order mode is axisymmetric. This allows us to calculate the difference in predicted intensity. Next, we confirm these results with numerical calculation and existing FEL codes GINGER and GENESIS. Finally, we discuss the implications of this study with respect to the XFELO two-bunch experiment to be conducted at LCLS-II.
[1] Z. Huang and K.-J. Kim, "Review of X-ray free-electron laser theory", Phys. Rev. ST-AB, vol. 10, p. 034801, 2007.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP038  
About • paper received ※ 19 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP041 X-cos SCILAB Model for Simulation of Intensity and Gain of Planar Undulator Radiation 138
 
  • H. Jeevakhan
    NITTTR, Bhopal, India
  • G. Mishra
    Devi Ahilya University, Indore, India
 
  SCILAB X-cos based model has been designed to simulate the Intensity and Gain of planar undulator radiation. Numerical approach has been used to determine the trajectories of an electron along x and z direction, traversing through a planar undulator. The present paper describes the technical details of the different blocks, parameters and possibility of combined model used for trajectory and intensity simulation Results are compared with the previous conventional syntax based codes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP041  
About • paper received ※ 01 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP042 Analysis of Undulator Radiations With Asymmetric Beam and Non-Periodic Magnetic Field 141
 
  • H. Jeevakhan
    NITTTR, Bhopal, India
  • G. Mishra
    Devi Ahilya University, Indore, India
 
  Harmonic Undulator radiations at third harmonics with non periodic constant magnetic field has been analysed. Symmetric and asymmetric electron beam with homogeneous spread has been used to present viable solution for the resonance shift inherited in undulator with constant magnetic field. The radiation recovers shifts in resonance and regain its intensity with asymmetric electron beam and harmonic field
Harmonic undulator, energy spread
 
poster icon Poster TUP042 [2.886 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP042  
About • paper received ※ 01 August 2019       paper accepted ※ 31 October 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP047 An Analysis of Optimal Initial Detuning for Maximum Energy-Extraction Efficiency 145
 
  • Q.K. Jia
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  For low gain free electron laser (FEL), the phase space evolutions of trapped electrons in the phase bucket are analyzed through calculating their synchrotron oscillation periods, which vary with the initial detuning and initial phase. The optimal initial detuning for the maximum energy-extraction efficiency and the corresponding saturation length are given. The analysis demonstrated that for the low gain case the gain of the strong optical field is about a quarter of that of the weak optical field (small signal gain), and the saturation power larger than that of high gain FEL can be achieved in the resonator of oscillator FEL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP047  
About • paper received ※ 19 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP049 Simulating Shot-Noise of ’Real’ Electron Bunches 149
 
  • P. Traczykowski, L.T. Campbell, B.W.J. MᶜNeil
    USTRAT/SUPA, Glasgow, United Kingdom
  • L.T. Campbell, B.W.J. MᶜNeil, P. Traczykowski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • L.T. Campbell, P. Traczykowski
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  An algorithm and numerical code for the up-sampling of a system of particles, from a smaller to a larger number, is described. The method introduces a Poissonian ’shot-noise’ to the up-sampled distribution [1], typical of the noise statistics arising in a bunch of particles generated by a particle accelerator. The algorithm is applied on a phase-space distribution of relatively few simulation particles representing an electron beam generated by particle accelerator modelling software, for subsequent injection into an Free Electron Laser (FEL) amplifier which is used here to describe the model. A much larger number of particles is usually required to model the FEL lasing process than is required in the simulation models of the electron beam accelerators that drive it. A numerical code developed from the algorithm was then used to generate electron bunches for injection into to an unaveraged 3D FEL simulation code, Puffin [2]. Results show good qualitative and quantitative agreement with analytical theory. The program and usage manual is available to download from GitHub [3].
[1] B.W.J. McNeil, M.W. Poole and G.R.M. Robb, Physical Review Special Topics - Accelerators and Beams Vol 6, 070701 (2003).
[2] L.T. Campbell and B.W.J. McNeil, Phys. Plasmas 19, 093119 (2012).
[3] https://github.com/UKFELs/JDF
 
poster icon Poster TUP049 [1.419 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP049  
About • paper received ※ 20 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP050 Comparison Between, and Validation Against an Experiment of, a Slowly-varying Envelope Approximation Code and a Particle-in-Cell Simulation Code for Free-Electron Lasers 153
 
  • P. Traczykowski, L.T. Campbell, J. Henderson, B.W.J. MᶜNeil
    USTRAT/SUPA, Glasgow, United Kingdom
  • L.T. Campbell, J. Henderson, P. Traczykowski
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • H. Freund
    University of New Mexico, Albuquerque, USA
  • B.W.J. MᶜNeil, P. Traczykowski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • P.J.M. van der Slot
    Mesa+, Enschede, The Netherlands
 
  Free-electron laser simulation codes employ either the Slowly-Varying Envelope Approximation (SVEA) or a Particle-in-Cell (PiC) formulation. Maxwell’s equations are averaged over the fast time scale in the SVEA so that there is no need to resolve the wave period. In contrast, the fast oscillation is retained in PiC codes. As a result, the SVEA codes are much less computationally intensive and are used more frequently than PiC codes. While the orbit dynamics in PiC codes and some SVEA Codes (MEDUSA and MINERVA) use the full unaveraged Lorentz force equations, some SVEA codes use the Kroll-Morton-Rosenbluth (KMR) approximation (GENESIS, GINGER, FAST, and TDA3D). Steady-state simulation comparisons [1] have appeared in the literature between different codes using the averaged and unaveraged particle dynamics. Recently, a comparison between three KMR SVEA codes (GENESIS, GINGER, and FAST) and the PUFFIN PiC code in the time-dependent regime has been reported [2]. In this paper, we present a comparison between the unaveraged PiC code PUFFIN, the unaveraged SVEA code MINERVA for the time-dependent simulation of SASE free-electron lasers with the experimental measurements from SPARC SASE FEL at ENEA Frascati.
[1] S.G. Biedron et al., NIMA 445, 110 (2000).
[2] B. Garcia et al., paper presented at the 38th International Free Electron Laser Conference, Santa Fe, New Mexico, 20 - 25 August 2017.
 
poster icon Poster TUP050 [0.908 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP050  
About • paper received ※ 02 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP053 An Investigation of Possible Non-Standard Photon Statistics in a Free-Electron Laser I: Experiment 161
 
  • J.-W. Park
    University of Hawaii, Honolulu,, USA
  • K.-J. Kim, R.R. Lindberg
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by U.S. DOE, Office of Science, Office of BES, under Award No. DE-SC0018428.
It was reported that the photon statistics of the seventh coherent spontaneous harmonic radiation of the MARK III FEL was sub-Poissonian [1], which concludes that Fano factor F (the ratio of photon number variance to the average photon number) is less than unity. Whether FEL light exhibits such non-standard behavior is an important issue; if it does, our understanding of the FEL needs to be radically modified. In this paper, we re-examine the analyses of experimental data in Ref. [1]. We find that the observed value of F could be explained within the standard FEL theory if one combines the detector dead time effect with photon clustering arising from the FEL gain. We propose an improved experiment for a more definitive measurement of the FEL photon statistics.
[1] T. Chen and J.M. Madey, J. Phys. Rev. Lett. 86, 5906 (2001).
 
poster icon Poster TUP053 [0.929 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP053  
About • paper received ※ 21 August 2019       paper accepted ※ 12 September 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP054 An Investigation of Possible Non-Standard Photon Statistics in a Free-Electron Laser II: Theory 165
 
  • J.-W. Park
    University of Hawaii, Honolulu,, USA
  • K.-J. Kim, R.R. Lindberg
    ANL, Lemont, Illinois, USA
  • K.-J. Kim
    University of Chicago, Chicago, Illinois, USA
 
  Funding: Work supported by U.S. DOE, Office of Science, Office of BES, under Award No. DE-SC0018428.
In this paper we explore whether we can at present find a theoretical basis for non-standard, sub-Poissonian photon statistics in the coherent spontaneous harmonic radiation of an FEL as was claimed to have been measured with the Mark III FEL [1]. We develop a one dimensional quantum FEL oscillator model of the harmonic radiation in the linear gain regime to calculate the photon statistics. According to our study, it seems unlikely that the photon statistics for an FEL oscillator starting from the noise could be sub-Poissonian.
[1] T. Chen and J.M. Madey, J. Phys. Rev. Lett. 86, 5906 (2001).
 
poster icon Poster TUP054 [0.386 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP054  
About • paper received ※ 21 August 2019       paper accepted ※ 16 September 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)