Author: Stephan, F.
Paper Title Page
TUP001 Extension of the PITZ Facility for a Proof-of-Principle Experiment on THz SASE FEL 38
 
  • P. Boonpornprasert, G.Z. Georgiev, G. Koss, M. Krasilnikov, X. Li, F. Mueller, A. Oppelt, S. Philipp, H. Shaker, F. Stephan, T. Weilbach
    DESY Zeuthen, Zeuthen, Germany
  • Z.G. Amirkhanyan
    CANDLE SRI, Yerevan, Armenia
 
  The Photo Injector Test Facility at DESY in Zeuthen (PITZ) has been proposed as a suitable facility for research and development of an accelerator-based THz source prototype for pump-probe experiments at the European XFEL. A proof-of-principle experiment to generate THz SASE FEL radiation by using an LCLS-I undulator driven by an electron bunch from the PITZ accelerator has been planned and studied. The undulator is foreseen to be installed downstream from the current PITZ accelerator, and an extension of the accelerator tunnel is necessary. Radiation shielding for the extended tunnel was designed, and construction works are finished. Design of the extended beamline is ongoing, not only for this experiment but also for other possible experiments. Components for the extended beamline, including magnets for beam transport, a chicane bunch compressor, electron beam diagnostics devices, and THz radiation diagnostics devices have been studied. An overview of these works will be presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP001  
About • paper received ※ 20 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP002 Progress in Preparing a Proof-of-Principle Experiment for THz SASE FEL at PITZ 41
 
  • X. Li, P. Boonpornprasert, Y. Chen, G.Z. Georgiev, J.D. Good, M. Groß, P.W. Huang, I.I. Isaev, C. Koschitzki, M. Krasilnikov, S. Lal, O. Lishilin, G. Loisch, D. Melkumyan, R. Niemczyk, A. Oppelt, H.J. Qian, H. Shaker, G. Shu, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
 
  A proof-of-princle experiment for a THz SASE FEL is undergoing preparation at the Photo Injector Test facility at DESY in Zeuthen (PITZ), as a prototype THz source for pump-probe experiments at the European XFEL, which could potentially provide up to mJ/pulse THz radiation while maintaining the identical pulse train structure as the XFEL pulses. In the proof-of-principle experiment, LCLS-I undulators will be installed to generate SASE radiation in the THz range of 3-5 THz from electron bunches of 16-22 MeV/c. One key design is to obtain the peak current of nearly 200 A from the heavily charged bunches of a few nC. In this paper, we report our simulation results on the optimization of the space charge dominated beam in the photo injector and the following transport line with two cathode laser setups. Experimental results based on a short Gaussian laser will also be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP002  
About • paper received ※ 20 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP003 Design of a Magnetic Bunch Compressor for the THz SASE FEL Proof-of-Principle Experiment at PITZ 45
 
  • H. Shaker, P. Boonpornprasert, G.Z. Georgiev, G. Koss, M. Krasilnikov, X. Li, A. Lueangaramwong, F. Mueller, A. Oppelt, S. Philipp, F. Stephan, G. Vashchenko, T. Weilbach
    DESY Zeuthen, Zeuthen, Germany
 
  For pump-probe experiments at the European XFEL, a THz source is required to produce intense THz pulses at the same repetition rate as the X-ray pulses from XFEL. Therefore, an accelerator-based THz source with identical electron source as European XFEL was suggested and proof-of-principle experiments utilizing an LCLS I undulator will be performed at the Photo Injector Test Facility at DESY in Zeuthen (PITZ). The main idea is to use a 4nC beam for maximum SASE radiation but to allow different radiation regimes a magnetic bunch compressor can be used. This helps e.g. to reduce the saturation length inside the undulator and also to study super-radiant THz radiation. In this paper a design of a chicane type magnetic bunch compressor using HERA corrector magnets is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP003  
About • paper received ※ 20 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA03
Emittance Budget in the Transition Regime Between Linear Emission and Space Charge Dominated Photoemission  
 
  • Y. Chen, M. Krasilnikov, H.J. Qian, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
 
  Free electron laser based X-ray facilities require high brightness accelerators which entails minimization of the beam emittance in all planes for a fixed bunch charge. Since the lowest achievable emittance of linac based accelerators is set at the injectors already, emittance optimization at the injector exit needs to carefully budget the contributions from the space charge and rf forces as well as the intrinsic cathode contribution. The optimization of normalized transverse emittance at the Photo Injector Test Facility at DESY in Zeuthen (PITZ) has routinely found the smallest possible emittance for a fixed bunch charge in a so-called transition regime of photoemission. In such a regime, high space charge density of the beam significantly contributes to the phase space formation. Strong space charge fields during the emission process alter the cathode physics thereby changing the emittance budget distribution. Based on an advanced beam dynamics modeling approach, we analyze each decomposed contribution of the measured emittance for understanding the optimization scheme in the transition regime between linear and space charge dominated emission. Obtained results will be presented.  
slides icon Slides WEA03 [1.918 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP050 Status of Chirped Pulse Laser Shaping for the PITZ Photoinjector 437
 
  • C. Koschitzki, Y. Chen, J.D. Good, M. Groß, M. Krasilnikov, G. Loisch, R. Niemczyk, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • E. Khazanov, S. Mironov
    IAP/RAS, Nizhny Novgorod, Russia
  • T. Lang, L. Winkelmann
    DESY, Hamburg, Germany
 
  The beam emittance at FEL facilities like European XFEL and FLASH is dominated by the emittance sources in the electron injector. Shaping of the laser pulses that are employed to release electrons from the cathode of a photo injector, was shown in theory to allow improved beam emittance starting from the electron emission process. At the photo injector test facility at DESY in Zeuthen (PITZ) a laser system capable of controlling the temporal and spatial profile of laser pulses is being set up to demonstrate the predicted emittance reduction experimentally. The presentation will show its current capabilities to provide temporally and spatially shaped laser pulses from a pulse shaper operating at infrared (IR) wavelengths. Furthermore, results from a shape preserving conversion into fourth harmonic ultra-violet (UV), as needed for the photo emission process, will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP050  
About • paper received ※ 21 August 2019       paper accepted ※ 17 September 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP051 PITZ Experimental Optimization for the Aimed Cathode Gradient of a Superconducting CW RF Gun 440
 
  • M. Krasilnikov, P. Boonpornprasert, Y. Chen, G.Z. Georgiev, J.D. Good, M. Groß, P.W. Huang, I.I. Isaev, C. Koschitzki, S. Lal, X. Li, O. Lishilin, G. Loisch, D. Melkumyan, R. Niemczyk, A. Oppelt, H.J. Qian, H. Shaker, G. Shu, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
  • M. Dohlus, E. Vogel
    DESY, Hamburg, Germany
 
  A continuous wave (CW) mode operation of the European X-ray Free-Electron Laser (XFEL) is under considerations for a future upgrade. Therefore, a superconducting radio frequency (SRF) CW gun is under experimental development at DESY in Hamburg. Beam dynamics simulations for this setup have been done assuming 100 pC bunch charge and a maximum electric field at the photocathode of 40 MV/m. Experimental studies for these parameters using a normal conducting RF photogun have been performed at the Photo Injector Test facility at DESY in Zeuthen (PITZ). The beam transverse emittance was minimized by optimizing the main photo injector parameters in order to demonstrate the feasibility of generating electron beams with a beam quality required for successful CW operation of the European XFEL for conditions similar to the SRF gun setup.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP051  
About • paper received ※ 20 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP052 Simulation Studies on the Saturated Emission at PITZ 444
 
  • X. Li, P. Boonpornprasert, Y. Chen, J.D. Good, M. Groß, I.I. Isaev, C. Koschitzki, M. Krasilnikov, S. Lal, O. Lishilin, G. Loisch, D. Melkumyan, R. Niemczyk, A. Oppelt, H.J. Qian, H. Shaker, G. Shu, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
 
  In this paper we report our consideration and simulation on the space charge dominated emission in the L-band photocathode RF gun at the Photo Injector Test facility at DESY in Zeuthen (PITZ). It has been found that the emission curve, which relates the extracted and accelerated bunch charge after the gun to the laser energy, doesn’t agree very well with Astra simulations when the emission is nearly or fully saturated. Previous studies with a core-halo model for a better fit of the experimentally measured laser transverse profile as well as with an improved transient emission model have resulted in a better agreement between experimental data and simulation. A 3D FFT space charge solver including mirror charge and binned energy/momentum has been built, which also allows more emission mechanisms to be included in the future. In this paper, the energy spread during emission was preliminarily analyzed. Experimentally measured emission curves were compared with simulation, showing the effect of the inhomogeneity of the laser on the emission and beam parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP052  
About • paper received ※ 20 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP054 Beam Dynamics Optimization of a Normal-Conducting Gun Based CW Injector for the European XFEL 452
 
  • H. Shaker, S. Lal, H.J. Qian, G. Shu, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
 
  The European XFEL is operating up to 17.5 GeV electron energy with maximum 0.65% duty cycle. There is a prospect for continuous wave and long pulse mode (CW/LP) operation of the European XFEL, which enables more flexible bunch pattern time structure for experiments, higher average brightness and better stability. Due to engineering limitations, the maximum electron beam energy in the CW/LP mode is about 8.6/12.8 GeV, which puts more pressure on the injector beam quality for lasing at the shortest wavelength. This paper optimizes the beam dynamics of an injector based on a normal-conducting VHF gun.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP054  
About • paper received ※ 20 August 2019       paper accepted ※ 26 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP055 Multiphysics Analysis of a CW VHF Gun for European XFEL 456
 
  • G. Shu, Y. Chen, S. Lal, H.J. Qian, H. Shaker, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
 
  R&D for a possible future CW mode operation of European XFEL started after the successful commissioning of the pulse mode operation. For the CW electron source upgrade, a fully superconducting CW gun is under experimental development at DESY in Hamburg, and a normal conducting (NC) CW gun is under physics design at the Photo Injector Test facility at DESY in Zeuthen (PITZ) as a backup option. Based on the experience of the LBNL on a 187 MHz gun, the DESY 217 MHz gun increased the cathode gradient and RF power to 28 MV/m and 100 kW, respectively, to further improve the beam brightness. In this paper, the multiphysics analysis investigating the RF, thermal and mechanical properties of the 217 MHz NC CW gun are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP055  
About • paper received ※ 20 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP062 Test of Cs2Te Thickness on Cathode Performance at PITZ 473
 
  • P.W. Huang
    TUB, Beijing, People’s Republic of China
  • Y. Chen, M. Groß, I.I. Isaev, P. Kitisri, C. Koschitzki, M. Krasilnikov, S. Lal, X. Li, O. Lishilin, D. Melkumyan, R. Niemczyk, A. Oppelt, H.J. Qian, H. Shaker, G. Shu, F. Stephan, G. Vashchenko, T. Weilbach
    DESY Zeuthen, Zeuthen, Germany
  • A. Grigoryan
    CANDLE, Yerevan, Armenia
  • S. Lederer
    DESY, Hamburg, Germany
  • P. Michelato, L. Monaco, D. Sertore
    INFN/LASA, Segrate (MI), Italy
 
  Cesium telluride is a widely used cathode in photo injectors, and its performance is one of the keys for not only emittance but also reliable operation. Over the years lots of experiences with Cs2Te photocathodes produced with the same recipe and thickness were gained at the DESY photo injectors, but cathode performance dependence on the cathode layer thickness were not investigated. In this paper, we test fresh Cs2Te cathodes with different thickness at the Photo Injector Test Facility at DESY in Zeuthen (PITZ). The QE and thermal emittance of these cathodes inside the high gradient RF gun will be compared. Besides, the injector emittance under the operation conditions of the XFEL will also be measured with these cathodes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP062  
About • paper received ※ 20 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP007 Frequency-Detuning Dependent Transient Coaxial RF Coupler Kick 599
 
  • Y. Chen, J.D. Good, M. Groß, P.W. Huang, I.I. Isaev, C. Koschitzki, M. Krasilnikov, S. Lal, X. Li, O. Lishilin, G. Loisch, D. Melkumyan, R. Niemczyk, A. Oppelt, H.J. Qian, H. Shaker, G. Shu, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
  • F. Brinker, W. Decking
    DESY, Hamburg, Germany
 
  We model and characterize a transverse kick which results from the coaxial RF coupler in the L-band RF gun at the Photo Injector Test Facility at DESY in Zeuthen (PITZ). The RF pulse is typically 600 µs long and used to produce a train of up to 2700 electron bunches. The kick is transient and found to be dependent on the detuning of the resonance frequency of the gun cavity. The frequency detuning within the RF macro-pulse results in a variation in the kick strength along the pulse. This leads to a downstream orbit and size change of individual bunches within the train. Using 3D RF field distributions calculated at detuned frequencies of the cavity, particle tracking simulations are performed to simulate the transient kick onto the bunch train. Given a drift distance, the orbit and size change along a train of fixed length is estimated. Systematic measurements of the kick have meanwhile been carried out. The temperature of the cooling water for the gun is tuned allowing detailed characterization of the frequency detuning within the RF pulse, and thereby measurements of the kick under conditions of practical interest. Experimental findings and simulation results will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP007  
About • paper received ※ 13 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)