Author: Salen, P.M.    [Salén, P.M.]
Paper Title Page
THP084 Status of the Soft X-Ray Laser (SXL) Project at MAX IV Laboratory 749
  • F. Curbis, J. Andersson, L. Isaksson, M. Kotur, F. Lindau, E. Mansten, M.A. Pop, H. Tarawneh, P.F. Tavares, S. Thorin, S. Werin
    MAX IV Laboratory, Lund University, Lund, Sweden
  • S. Bonetti, A. Nilsson
    Stockholm University, Stockholm, Sweden
  • V.A. Goryashko
    Uppsala University, Uppsala, Sweden
  • P. Johnsson, W. Qin
    Lund University, Lund, Sweden
  • M. Larsson, P.M. Salén
    FYSIKUM, AlbaNova, Stockholm University, Stockholm, Sweden
  • J.A. Sellberg
    KTH Physics, Stockholm, Sweden
  Funding: The work is supported by Knut and Alice Wallenberg foundation.
A Soft X-ray Laser project (the SXL) aiming to produce FEL radiation in the range of 1 to 5 nm is currently in a conceptual design phase and a report on the design is expected to be delivered by March 2021. The FEL will be driven by the existing 3 GeV linac at MAX IV laboratory, which also serves as injector for the two storage rings. The science case has been pushed by a large group of mainly Swedish users and consists of experiments ranging from AMO physics to condensed matter, chemistry and imaging in life science. In this contribution, we will present the current conceptual design of the accelerator and the FEL operation modes together with a general overview of the beamline and experimental station. In particular design options for the FEL will be discussed in conjunction with the features of the electron beam from the MAX IV linac and the connection with the proposed experiments.
DOI • reference for this paper ※  
About • paper received ※ 21 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
From Femtosecond to Attosecond Coherent Undulator Pulses  
  • V.A. Goryashko, P.M. Salén, G.K. Shamuilov
    Uppsala University, Uppsala, Sweden
  Funding: Swedish Research Council (VetenskapsrÃ¥det) (grant no. 2016-04593); Stockholm-Uppsala Centre for Free-Electron Laser Research (SUFEL).
In Bohr’s model of the hydrogen atom, the ground-state electron completes one cycle of revolution in 150 attoseconds. Some other processes in atoms and molecules can be even faster. Femtosecond and attosecond pulses of light can provide the resolution needed for studying and ultimately controlling the dynamics of electrons in solids, molecules and atoms. Therefore, there is a strong scientific demand for the development of sources of high-energy, ultrashort, coherent, X-ray pulses. In this talk, we (i) review the characteristic time and length scales in atoms, molecules and nanostructures, (ii) outline the progress on short-pulse generation over time and the state-of-the-art of production of high-energy, ultrashort pulses; (iii) examine the demonstrated and proposed schemes of the generation of femtosecond and sub-femtosecond pulses with FELs, (iv) discuss recent concepts [1] for the production of 100-attosecond pulses.
[1] A. Mak et al., "Attosecond single-cycle undulator light: a review," Reports on Progress in Physics, Vol. 82, 02590 (2019).
slides icon Slides THD01 [9.690 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)